
Representation Spec Revision 1

 1

Proposal for Representing in the Trigger Database
 Trigger lists allowed by Splitting and Oring

Jim Linnemann, Marco Verzocchi, Igor Mandrechenko
January 3, 2006; Revised Feb 17, 2006

As discussed in the requirements document, any trigger configuration can be written in terms of triplets of
L1, L2, L3. The triplets are ordered by an index number entered by the triggermeister. Split triggers are
naturally represented by triplets. The essence of this proposal is to use special values of L2 or L3 in the
triplets in the database to extend the triplet representation to Or’d triggers. This trades some extra work in
parts of the software against the software changes required for altering the database structure to support
Oring more directly. As we descend to the implementation level, we will see that the syntax rules of the
requirements document are implemented as constraints on ordering of triplets, and rules concerning the
triplets allowed sharing a single L1 trigger. We discuss here mainly definitions of a single L1 trigger. An
appendix discusses details of the resulting xml generation, and a new requirement which was discovered
during testing.

1. Pure Splitting. In particular, all Split triggers can be expressed directly and without redundancy in this
notation.

 L1 + [L2 + S[L3]]
Pure
splitting

 Triplets L3 Group Display/xml L3 Group
Index L1 L2 L3 S/O Name L1 L2 L3 S/O Name L1bit L2bit L3bit

1 L1 A a1 S S1 L1 A a1 S S1 1 1 1
2 L1 A a2 S S1 a2 S S1 2
3 L1 B b1 S S2 B b1 S S2 2 3
4 L1 B b2 S S2 b2 S S2 4
5 L1 B b3 S S2 b3 S S2 5
6 L1 C c1 S S3 C c1 S S3 3 6
7 L1 C c2 S S3 c2 S S3 7
8 L1 D d S S4 D d S S4 4 8
9 L1 E a1 S S1 E a1 S S1 5 9
10 L1 E a2 S S1 a2 S S1 10

The panel on the left indicates an entry-oriented view; on the right is closer to what would be displayed, or
generated in xml; it shows more clearly the tree-oriented structure. The redundancy in this view is minimal:
only the repeated L1 and L2 elements need to be re-entered. The S/O column is included only for clarity: it
can actually be computed from the L1, L2, L3 triplet. In the case of pure splitting, only splitting elements
are present. The L3 Group Name is also an optional feature. It would be advantageous if it is feasible to
allow it to be appended to the fundamental trigger triplet (+ the index number entered by the triggermeister
to impose correct ordering): groups of terms could be designated clearly for triggermeisters and users
without having to carefully scan to see whether they were fully identical, and it might be possible to help
support copy and paste in the user interface. At the simplest level, a low-level name could be computed from
the triplet. The condition is that the group name must change when the L2 bit name changes. Generation of
xml from the entries is straightforward, provided that the index numbers impose correct ordering. If the list
were to be modified to insert a new L2 trigger, say L21D after index 7, the subsequent index numbers would
have to be incremented accordingly. The bit numbers are counters to track usage of resources. This ordering
is believed to be the order in which COOR will assign bit numbers, but in any case, COOR makes the final
assignment, taking into account resources used for other runs. The L2 bit number tracked is the number of
unique bits assigned in the 4096 mask, but does not necessarily correspond to the bit COOR would assign, as

Representation Spec Revision 1

 2

some of these may be used for internal purposes. The L2 also produces a bit mask with entries numbered
identically to the L1 bit (the confirmed-L1-bit mask actually used by the L3 to implement Oring).

Representation Spec Revision 1

 3

2. Pure Oring. To allow a similarly direct representation of Or groups requires a mild extension of the
notion of triplets. This extension requires a special Or script marker, which I here denote as *Or, to be
recognized by the trigger database and the user interface. Although Or scripts could be represented as
splitting triggers, they would be longer, and contain redundancies. This representation allows the
redundancies to be removed. The implementation of the *Or markers is given in Appendix A.

 L1 + [L2] + O[L3] Pure Oring Display/xml
Index L1 L2 L3 S/O NAME L1 L2 L3 S/O NAME L1bit L2bit L3bit

1 L1 A *Or O L1 A N 1 1
2 L1 B *Or O B N 2
3 L1 C *Or O C N 3
4 L1 D *Or O D N 4
5 L1 E *Or O E N 5
6 L1 *Or y1 O O1 L2OR y1 O O1 1
7 L1 *Or y2 O O1 L2OR y2 O O1 2

Again, the S/O column can be computed from the triplet information: any triplet containing a *Or has been
entered in order to express an Or. The entry order here begins with the L2 bits which comprise the Or, and
finishes with the L3 terms comprising the Or group. A significant new constraint is needed to handle the
change in notation: if a triplet with *Or in the L3 position appears, then definition of a L3 Or group is
required. If a L3 group name is desired, the constraint is that the name must be defined when the first
member of the group is defined. Again, a computer-generated name is possible if it is to be computed from
the first L3 term in the group. Generation of xml from the left-hand entry form is again straightforward,
provided the index numbers are correct. Modification of an existing trigger list by inserting another L2 term
after line 5 would again require reassigning the index numbers.

3. Splitting with optional Oring: Mixed case 1.
Now let us see whether new issues arise when we consider a mixture of splitting and oring. First we
consider adding an optional Or group to the splitting case. Here all L2 bits have L3 split groups, and
addition a L3 Or group is assigned.

L1 + [L2 + S[L3]] + O{L3}
Splitting with Optional Oring Display/xml
Index L1 L2 L3 S/O NAME L1 L2 L3 S/O NAME L1bit L2bit L3bit

1 L1 A a1 S S1 L1 A a1 S S1 1 1 1
2 L1 A a2 S S1 a2 S S1 2
3 L1 B b1 S S2 B b1 S S2 2 3
4 L1 B b2 S S2 b2 S S2 4
5 L1 B b3 S S2 b3 S S2 5
6 L1 C c1 S S3 C c1 S S3 3 6
7 L1 C c2 S S3 c2 S S3 7
8 L1 D D S S4 D d S S4 4 8
9 L1 E a1 S S1 E a1 S S1 5 9
10 L1 E a2 S S1 a2 S S1 10
11 L1 *Or y1 O O1 L2OR y1 O O1 11
12 L1 *Or y2 O O1 L2OR y2 O O1 12

This introduces no notational issues. The rules given above for recognizing Oring, and for group naming,
and list modification are unchanged. One new sequencing issue arises: the user interface should allow
introduction of an optional Or group after splitting entries have been defined. The meaning of this
configuration is that the final Or group is applied in L3 when any of the individual L2 triggers pass.

Representation Spec Revision 1

 4

4. Oring with optional Splitting: Mixed case 2.
Finally, we consider the most general case, that of Oring with optional Splitting. Here, the syntax allows a
L2 condition with no split: it exists solely to form part of an Or group, though other L2 bits also have split
groups.

L1 + [L2 + S{L3}] + O[L3] Oring with Optional Splitting
Index L1 L2 L3 S/O Name L1 L2 L3 S/O NAME L1bit L2bit L3bit

1 L1 A a1 S S1 L1 A a1 S S1 1 1 1
2 L1 A a2 S S1 a2 S S1 2
3 L1 B b1 S S2 B b1 S S2 2 3
4 L1 B b2 S S2 b2 S S2 4
5 L1 B b3 S S2 b3 S S2 5
6 L1 C c1 S S3 C c1 S S3 3 6
7 L1 C c2 S S3 c2 S S3 7
8 L1 D d S S4 D d S S4 4 8
9 L1 E a1 S S1 E a1 S S1 5 9
10 L1 E a2 S S1 a2 S S1 10
11 L1 F *Or O F N 6
12 L1 *Or y1 O O1 L2OR y1 O O1 11
13 L1 *Or y2 O O1 L2OR y2 O O1 12

The new ordering issue here is that after any pure-splitting entries, actually two possibilities arise: one may
add L2 terms without a split L3 member, then the following L3 Or group may be entered. So the
recommended entry order would be: Splits, L2 to be Or’d and the L3 Or group. It is not clear that this order
is required, but it certainly renders xml generation and user displays straightforward. No other new
constraints or notational issues arise from considering this case.

A natural but much more disruptive generalization is to allow the L3 slot in the triplets to be a pointer to a
group of terms, so that the triplets would consist of L1, L2, L3group. That would give even more support to a
secure copy by reference.

5. Two Consecutive L1 groups with same L1 condition: First has an Or group

 L1 + [L2] + O[L3] Pure Oring Display/xml
Index L1 L2 L3 S/O NAME L1 L2 L3 S/O NAME L1bit L2bit L3bit

1 L1 A *Or O L1 A N 1 1
2 L1 B *Or O B N 2
3 L1 *Or y1 O O1 L2OR y1 O O1 1
4 L1 *Or y2 O O1 L2OR y2 O O1 2
5 L1 C a1 S S1 L1 E a1 S S1 2 3 3
6 L1 C a2 S S1 a2 S S1 4

One new issue arises when considering the grouping of entries by L1 trigger. Currently with no branching in
L2, the rule is simple: if the L1 or L2 term changes, then a new L1 bit is consumed and a new L1 group is
formed. With branching this must be revisited. The examples so far have assumed implicitly that the next
L1 group uses a different L1 trigger. What if this is not the case? This might happen because it is desired
that the second group of triggers using the same L1 condition is treated differently for some reason. For
example, it might be desired to allow different prescales. In this example we see that the rule can be easily
extended by causing a break between L1 trigger groups at index 5, since the L3 Or group has ended.

Representation Spec Revision 1

 5

6. Two Consecutive L1 groups with same L1 condition: First has no Or group

L1 + [L2 + S[L3]] + O{L3}
Splitting with Optional Oring Display/xml
Index L1 L2 L3 S/O NAME L1 L2 L3 S/O NAME L1bit L2bit L3bit

1 L1 A a1 S S1 L1 A A1 S S1 1 1 1
2 L1 A a2 S S1 A2 S S1 2
3 L1 B b1 S S2 B B1 S S2 2 3
4 L1 C c1 S S3 C C1 S S3 3 4
5 L1 *Or *Or L1 E A1 S S1 2 4 5
6 L1 D a1 S S1 A2 S S1 5 6
7 L1 E a2 S S1 L2OR y1 O O1 7
8 L1 *Or y1 O O1 L2OR y2 O O1 8
9 L1 *Or y2 O O1

However, if the first L1 group has no terminating L3 Or group, a new issue arises. Here we desire to end the
first L1 group at index 4, with index 6-9 forming a second group. So Index 5 contains a trigger containing
no real information. The existence of the *Or markers in BOTH the L2 and L3 slots constitutes a second
special marker which forces termination of the first L1 group. The new L1 group is signaled in the display
by incrementing the L1 bit.

Summary of Rules
A. Required features

A.1 Index ordering of entries: Split entries, then L2 Or entries, then L3 Or entries.
A.2 L3 Split groups are of length 1 or more. Triplets with all three entries are members of split groups.
A.3 *Or in the L2 slot indicates that a L3 definition is there as a part of a L3 Or group.
A.4 *Or in a L3 slot indicates that a L2 definition is there only as a part of a L2 Or group. A L1 trigger
group with such a definition must also contain a L3 Or group definition.
A.5 A terminating L3 Or group is always allowed for a L1 bit, but only required as in A.4
A.6 There is only one L3 Or group (of one or more entries) per L1 trigger.
A.7 L1, L2, and L3 bit numbers increment as each new element is introduced. These are not actual bit
assignments, but running counts to track resource use. They appear in the report interface, but are not part of
the database, nor of the generated xml. Coor assigns the actual bit numbers.
A.8 The index ordering must respect the grouping of Split and Or groups, and generation of xml directly
follows from the index ordering.
A.9 Modification of a trigger list by insertion forces renumbering of index numbers and L2/L3 bit counting.
Any such insertion must obey rules A.1-8. It is desirable (but not strictly required?) that the index
renumbering be automatic.
A.10 A new L1 trigger condition starts a new L1 trigger group.
A.11 Two adjacent L1 trigger groups with the same L1 trigger are separated either by a L3 Or group at the
end of the first group, or a *End marker in the L1 slot at the end of the first L1 group.
A.12 The features relevant to the Trigger List Report should also be reflected in the Skeleton Report.
A.13 The modified xmlgen should be backwards compatible:
A.13.a The UniqueL1L2 mode must be preserved, though it need not operate on new trigger lists including
Oring.
A.13.b xmlgen should have a NoL2Branching mode which supports neither Splitting nor Oring, and
produces identical xml as the old xmlgen for old trigger lists with neither feature included. Appendix B
contains more details on backwards compatibility.

Representation Spec Revision 1

 6

A14 The resulting xml is discussed in Appendix C.

B. Optional features (L3 Split/Or group names)

Group names (for groups of L3 terms) can help both triggermeisters and physics users to recognize blocks
repeated across triggers. It would be useful for group names to be generated by the user interface (even as
simple as numbers); it would be more desirable to allow users to create the group names, and to manipulate
(e.g. copy and paste) groups.

B.1 If identical content does not guarantee an identical name, the main motivation for naming is lost.

B.2 Repetition of a name (within or across L1 trigger groups) must guarantee identity of content. This
must remain true even if a trigger list is revised. If one of several “instances” of a group is altered, it must
then be guaranteed to have a new name. Name may be used slightly loosely to include a version number.
Useful names are inherently non-local if they represent re-used groups of items. Maintaining this property
could either be the responsibility of the triggermeister (as assignment of the Index number is), or more
ambitiously, the TDB or its user interface.

B.3 A Split Group name is defined at first usage, and may change when the L2 bit changes (i.e. a new split
group begins). Each entire Split group has the same name.

B.4 An Or Group name is defined when the first element of the group is entered. The whole Or group has
the same name.

Appendix A: Implementation of Special Markers
The L2 *Or marker is implemented as a special script named L2_OR_MARKER
The L3 *Or marker is implemented as a special script named L3_OR_MARKER

Appendix B: Backwards Compatibility
Backwards Compatibility is part of the implementation of Splitting/Oring. It is not necessary by the end of
February (though that would be welcome and might be a best use of time) but certainly needed before the
end of the shutdown.

1) Backwards compatibility mode for old scripts; perhaps controlled by a command line argument, say
L2NoBranch: This is new functionality for xmlgen (though it simply preserves old functionality)
 default: allow more than 1 L2 attached to a L1 trigger normal new operation
 if -L2Nobranch: no Splitting, no Oring allowed special mode: old operation

2) UniqueL1L2 mode is required to be supported. This was already existing functionality; it should be
verified that it still works:
 for each L3 trigger, generate a separate L1 and L2 bit.
This is more restrictive still than L2NoBranch.

For each of these two special modes:

L2 Oring and L2 mixed split/or scripts are forbidden and should generate an error. The implementer
may choose to allow (but ignore) the L1 *End separator, but *Or is not allowed either mode.

For each of these, L2 Splitting scripts will generate valid xml, but be interpreted differently under normal
operation, and under these two modes. To see how these special modes will work, consider a set of scripts
Index L1
1 L1Q L2a L3a

Representation Spec Revision 1

 7

2 L1Q L2a L3b
3 L1Q L2b L3c
4 L1Q L2b L3d

UniqueL1L2 will generate xml for 4 L1 triggers (one per index line) L2Nobranch on the other hand would
generate xml for 2 L1 triggers, breaking between index 3 and 4.

Appendix C: xml generation and *Or null scripts

Here we discuss three items related to the generated xml file, and give a commentary on the xml generated
by a test trigger. First we discuss the portion of the xml file aimed at the L3 parser, second we discuss how
*Or null scripts interact with the regular xml, and the L3 parser part of the file, and finally we discuss a new
attribute required in one item of the regular xml to maintain proper linkage between the two parts of the xml
file. The fourth part of this appendix gives the input trigger list, and the fifth part gives the xml output with
some interleaved commentary.

C.1 <triglist> part of xml file
The <triglist> part of the file is aimed at the L3 parser, and is not in true xml format. Part A consists of
directives, and detailed information of items used by L3 scripts. It does not interact with splitting and oring,
except that no content should be generated for terms of L3_OR_MARKER L3 scripts used solely to
implement the *Or marker.
Part B consists of a series of three-part structures:
 L2trig l2name
 filter TriggerName
 script term(s)
One of these structures is emitted for each real L3 script in the trigger. In principle, one such structure is
emitted for each index line of the trigger list, since each line has a L3 script. However, no such structure is
emitted for a line which contains a null L3 script implementing a *Or marker. The L2trig name, l2name, is
based on the content of the index line containing the L3 script. Its purpose is to help the L3 parser recognize
when it has received all the relevant COOR messages giving the associations of L2 bits, for which the L3
script is to be run when that L2 bit fires. For a split, this is the individual L2 bit.

For an Or, the reference is instead actually to the L1 bit (and this reference is repeated for each of the L3
scripts of the L3 or group), since the L3 scripts are each run whenever that L1 bit is confirmed by ANY of
the L2 scripts (in the example, by either L2CALEM or L2CALDIEM). In our example, this name is
generated by taking the trigger list index (line) number (5) and pre-pending it to the Trigger Name of Index
line 5, where the Or group begins.

C.2 *Or “scripts” in the xml
Again a general rule is respected: L2 or L3 scripts used to implement *Or should not produce output about
their details; they should only be used to generate the correct xml tree structure. The xml file annotations
give an example if what would be (incorrectly) implied were a L3 *Or marker script be allowed to generate
output: it would indicate a no-contents L3 script, which would produce a real L3 bit tied to a (probably)
always-pass split script, while the intention was to produce no L3 split bit, but only to produce a L2 bit to be
used as an input to an Or of L2 bits triggering an L3 Or group: L3 scripts each reported on their own bit, but
which are attempted only when one of the L2 scripts of the L2 Or group pass.

In the regular xml, there is a line <l2trigger name='3^ARNOLD_OR1'>. This name is generated by taking
the trigger list index (line) number (3) and pre-pending it to the Trigger Name of Index line 3. This is the
current convention for the L2 trigger name. A most peculiar one, as it has no required relation to the L2

Representation Spec Revision 1

 8

script name, but this convention was chosen solely to generate a unique name. (This convention may be
revisited some time in the future). Such lines will be generated only for real (non-marker) L2 scripts, so this
example has only L2 names for lines 3 and 4 in the xml section, while similarly, there are only <l3trigger>
lines for lines 5 and 6, since those are the ones with real, non-marker, L3 scripts.

C.3 l2orname attribute of <l1trigger name> xml object
Notice that there is an apparent mismatch between the two parts of the xml file: the regular xml file carries
l2names for the real L2 scripts, while the <triglist> part of the file contains references to the l2 name derived
from the TriggerName of line 5, which does not have a real L2 script, only a *Or marker, and in fact this
particular l2name therefore appears nowhere in the regular xml. As mentioned above, this “l2”name is a
standing for a L2 bit associated with the or of all L2 scripts for the L1 bit. COOR needs to be told about this
name in the regular xml in order to generate the right COOR directives to L3 to point the L3 or group to the
correct L2 bit in the “L2-confirmed L1 bit” output mask. Therefore, a new item, l2orname, is added to the
<l1trigger name> item in the xml. The name referenced there must be identical to the name used in the l2trig
element of the <triglist> for each filter of the L3 or group. The good news is the computation is local in that
it involves only a single trigger list line. The bad news is that it is used non-locally: it is inserted in the L1
xml structure, which begins at the first use of a new L1 bit.

C.4 A pure-splitting trigger list example
The report below is obtained from http://d0db-
prd.fnal.gov/trigdb/cgi/tdb_report_element.py?function=Trigger_List&intlname=Test_L2oring&intlversion=
1.00

The logical structure of this trigger is:

Index TriggerName L1 L2 L3
1(1) Min_bias_nim_NCU Afastz_ncu None Pf1
2(2) Zero_bias_NCU ALiveBX_ncu None Pf1
3(3) Arnold_or1 TTK(1,10.) L2CALEM L3_OR_MARKER
4(3) Arnold_or2 TTK(1,10.) L2CALDIEM L3_OR_MARKER
5(3) Arnold_or3 TTK(1,10.) L2_OR_MARKER Mp_Ele
6(3) Arnold_or4 TTK(1,10.) L2_OR_MARKER L3FEle
Notice that the (3) in the Index column corrects the included report by counting the L1 trigger bit correctly.

Trigger List Report
Trigger List Name input: [intlname , intlversion] = [TEST_L2ORING , 1.00]
TRIGGER LIST Name/Version= Test_L2oring / 1.00 , Use_Status= unused , Current_Status= local
Implementation in: primary DAQ system , Configuration Type = physics , autopause= yes ,
comics_runtype= data , l3_type= regular , num_nodes= 0 , Trigger_count= 7 , Link to RunsDB using this
TriggerList.
Created (Modified) by Pompos on 23-Jan-2006_16:37 (30-Jan-2006_10:43)
Description: A simple trigger list to test pure L2 orring.

Group 1 allcrates / 1 regular 0

L1 Cal Trigger Tower Programming (L1Dialog): em3 em9 null

Representation Spec Revision 1

 9

L1 detector Neotypes :
(Link to Neoterms)

CFT/CPS
ctt/2.00

Calorimeter
emcount/1.00

Special (Named) And/Or
specterm/1.00

L2 filters : none EM HT EM RANDOMPASS none

L2 tools : EM(0,6.,0.,0.,0.,0.,1.,6.,0,none,5,0,3,3,50) / 1
 EM(0,120.,999.,999.,999.,999.,1.,1.,0,none,5,0,3,3,50) / 1 COMMISSION / 1

L3 filters : PassFraction OR_MARKER Ele Ele mp Ele Ele Ele mp PassFraction

L3
tool
s :

L3ERR_onli
ne / 2 GEO / 1 RUN_CFG / 1 CAL_UNP_NLC_NA

DA / 1 SmtUnp / 5 CFTUn
p / 4

 GlobalTrack
er / 5

PrVTX3
/ 2

CAL_CLUS4_PV3_NLC
_ON / 2 NONE / 1 ELE_NLV_S

HT / 2
PhTrk1
/ 2

 IsoEle_SHT
/ 2

ELE_NL
V / 2 ELE_NLV_SH / 2

ind
ex

Trigger
Name Level 1 Level 2 Level 3

This trigger definition includes a set of tools required by Level 3 ScriptRunner (a run
configuration, an error handling tool and a geometry tool). Because it includes 'null' scripts
at Level 1 and 2, it is not part of any specific trigger (a bit is not assigned), rather, it
defines tools used by general programming instructions to Level 3 for this configuration to
be listed before any trigger specific tools or filters in the element. This version has the
error handling tool at the 'error' threshold.

0
SRTOOLS
_ONLINE /
5

 SRtools_online / 5
The following triggers belong to the same Exposure Group.

They share Device Group = allcrates / 1 and Exposure related L1 And/Or Terms:
[ALiveBX & NOT(ASkip0) & NOT(Acaltc00)]

requires beam crossing and N/S luminosity monitors above threshold in coincidence and
NOT unsuppressed Calorimeter read out. This is the same as min_bias_NCU with the nim
to denote run I electronics. 1(1)

min_bias_n
im_NCU /
1

Afastz_ncu / 1 none / 1 pf1 / 1
requires beam crossing (an accelerator condition) and NOT unsuppressed Calorimeter read
out 2(2) zero_bias_

NCU / 2
ALiveBX_ncu / 1 none / 1 pf1 / 1
L1 : E13_ISHT22 / 2 L2 : E13_ISHT22 / 2 L3 : placeholder

3(3) ARNOLD_
OR1 / 1 TTK(1,10.)_CEM(2,

3)CEM(1,9)_ncu / 1

L2CALE
M(15,x) /
2

L3_OR_MARKER / 1

L1 : E13_ISHT22 / 2 L2 : E14_2L15_SH15L20 / 2 L3 : placeholder

4(4) ARNOLD_
OR2 / 1

L2CALDI
EM(18) /
1

L3_OR_MARKER / 1

5(5) ARNOLD_ L1 : E13_ISHT22 / 2 L2 : placeholder L3 : E13_ISHT22 / 2

Representation Spec Revision 1

 10

OR3 / 1

L2_OR_
MARKER
/ 1

mp17000_Ele(ELE_NLV_SHT,1,22.,0.,3.6)_Ele(IsoEle
_SHT,1,22.,0.,3.6) / 2

L1 : E13_ISHT22 / 2 L2 : placeholder L3 : E14_2L15_SH15L20 / 2
6 ARNOLD_

OR4 / 1 L3FEle(ELE_NLV,2,15.,0.,3.6)_L3FEle(ELE_NLV_SH
,1,15.,0.,3.6)_L3FEle(ELE_NLV,1,20.,0.,3.6) / 2

The following triggers belong to the same Exposure Group.

They share Device Group = allcrates / 1 and Exposure related L1 And/Or Terms:
[ALiveBX & Acaltc00 & NOT(ASkip0)]

A trigger to read out all Calorimeter channels in upsuppressed mode.
7(6) Cal_unsupp

ressed / 3 Acaltc00 / 1 none / 1 mp1 / 2

C.5 xml with commentary
This is from the Test_L2oring-1.00 triggerlist. The file generated by the XML generator
needs three modifications:
1) add an attribute
 l2orname='5^ARNOLD_OR3'
 in the <l1trigger name='.......' > element for the L1 triggers which contain L2-oring
 (this is not needed for triggers which do not use L2-oring) . Note the correspondence
 between the name used for this new l2orname='....' attribute and the name of the
 L2 trigger
 L2trig 5^ARNOLD_OR3|
 filter ARNOLD_OR3 |
 in the corresponding portion of the L3 instructions in the XML file.
 (Is this possible without a two pass procedure ? Is the XML code for a given
 L1 trigger written after extracting all the information from the database ?)

2) remove the lines
 <l3trigger name='ARNOLD_OR1'/>
 and
 <l3trigger name='ARNOLD_OR2'/>
 from the L1/L2 portion of the XML file.

3) remove the lines
 L2trig 3^ARNOLD_OR1|
 filter ARNOLD_OR1 |
 L2trig 4^ARNOLD_OR2|
 filter ARNOLD_OR2 |
 from the L3 instructions in the XML file.

The following is an XML generated from the trigger. It includes comments of the form
[comment]…[end comment]. Linebreaks may not be accurate in this document.

<?xml version='1.0' encoding='US-ASCII'?>
<!DOCTYPE configuration SYSTEM "trigger_config.dtd">
<configuration autopause='yes' name='Test_L2oring' type='physics' comics_runtype='data' version='1.00'

Representation Spec Revision 1

 11

physics='yes'>
 <!-- A simple trigger list to test pure L2 orring. -->
 <!--This file was xmlGenerated using the following program options:
 ../xmlgen.2.py -tlname Test_L2oring -tlversion 1 -file -L2or yes-->&allcrates_readout;
<!--File allcrates_readout.xml must contain definitions of cratelists named allcrates and allcrates_novbd -->
 <l1refsets>
 <l1em_refset name='em3'>
 Value 3.0</l1em_refset>
 <l1em_refset name='em9'>
 Value 9.0</l1em_refset>
 <l1hadveto_refset name='null'>
 Value 10000.0</l1hadveto_refset>
 </l1refsets>
 <level2>
 <l2calem box_size='3' ieta_min='4' ieta_max='35'/>
 <l2emtool minsingletoweremfrac='1.' major_version='4' minsingletoweret='6.'
name='EM(0,6.,0.,0.,0.,0.,1.,6.,0,none,5,0,3,3,50)' minneighboretafwdet='0.' minet='6.'
minneighborphicenet='0.' requirecps='0' requiretrack='0' minor_version='0' cpswindowiphi='3'
minneighboretacenet='0.' maxem='50' trackwindowiphi='5' minneighborphifwdet='0.' cpswindowieta='3'/>
 <l2emfilter emfrac='0.' name='EM(0,0.,1.,15.,50,EM(0,6.,0.,0.,0.,0.,1.,6.,0,none,5,0,3,3,50))' minet='15.'
major_version='2' minor_version='0' isofrac='1.' maxem='50'
tool='EM(0,6.,0.,0.,0.,0.,1.,6.,0,none,5,0,3,3,50)'/>
 <l2emtool minsingletoweremfrac='1.' major_version='4' minsingletoweret='1.'
name='EM(0,120.,999.,999.,999.,999.,1.,1.,0,none,5,0,3,3,50)' minneighboretafwdet='999.' minet='120.'
minneighborphicenet='999.' requirecps='0' requiretrack='0' minor_version='0' cpswindowiphi='3'
minneighboretacenet='999.' maxem='50' trackwindowiphi='5' minneighborphifwdet='999.'
cpswindowieta='3'/>
 <l2emfilter emfrac='0.' name='EM(0,0.,1.,1.,2,EM(0,120.,999.,999.,999.,999.,1.,1.,0,none,5,0,3,3,50))'
minet='1.' major_version='2' minor_version='0' isofrac='1.' maxem='2'
tool='EM(0,120.,999.,999.,999.,999.,1.,1.,0,none,5,0,3,3,50)'/>
 <l2commissiontool major_version='1' name='COMMISSION' minor_version='0'/>
 <l2randompassfilter passpercent='100.' tool='COMMISSION' major_version='1' name='PASS100'
minor_version='0'/>
 <l2htfilter
name='HT(0,18.,1,EM(0,0.,1.,1.,2,EM(0,120.,999.,999.,999.,999.,1.,1.,0,none,5,0,3,3,50)),PASS100,PASS1
00)' major_version='1' nfilters='1' filter1='PASS100'
filter0='EM(0,0.,1.,1.,2,EM(0,120.,999.,999.,999.,999.,1.,1.,0,none,5,0,3,3,50))' filter2='PASS100'
minor_version='0' htmin='18.'/>
 </level2>
 <trigdef l3type='regular' num_nodes='0'>
 <expogroup other_gs='allcrates_novbd' name='eg1_Test_1.00' readout='allcrates'>
 <l1termlist>
 <l1specterm name='live_accel_bx'/>
 <l1specterm require='veto' name='skip_next_n_0'/>
 <l1specterm require='veto' name='caltc00'/>
 </l1termlist>
 <l1trigger name='Afastz_ncu' prescale='0'>
 <l1termlist>
 <l1specterm name='fastz'/>
 <l1specterm name='live_accel_bx'/>

Representation Spec Revision 1

 12

 <l1specterm require='veto' name='skip_next_n_0'/>
 <l1specterm require='veto' name='caltc00'/>
 </l1termlist>
 <l2trigger name='1^min_bias_nim_NCU'>
 <l3trigger name='min_bias_nim_NCU'/>
 </l2trigger>
 </l1trigger>
 <l1trigger name='ALiveBX_ncu' prescale='3400001'>
 <l1termlist>
 <l1specterm require='veto' name='caltc00'/>
 <l1specterm name='live_accel_bx'/>
 <l1specterm require='veto' name='skip_next_n_0'/>
 </l1termlist>
 <l2trigger name='2^zero_bias_NCU'>
 <l3trigger name='zero_bias_NCU'/>
 </l2trigger>
 </l1trigger>
[comment] The l2orname attribute highlighted here is a new item, discussed above. Note this name must be
identical to that used later as a l2trig reference for members of the L3 or group in the <triglist> part of the
file.[end comment]
 <l1trigger name='TTK(1,10.)_CEM(2,3)CEM(1,9)_ncu' prescale='0' l2orname='5^ARNOLD_OR3'>
 <l1termlist>
 <l1ctt name='TTK(1,10.)'/>
 <l1emcount count='1' hadveto_refset='null' em_refset='em9'/>
 <l1emcount count='2' hadveto_refset='null' em_refset='em3'/>
 <l1specterm require='veto' name='skip_next_n_0'/>
 <l1specterm name='live_accel_bx'/>
 <l1specterm require='veto' name='caltc00'/>
 </l1termlist>
 <l2trigger name='3^ARNOLD_OR1'>
 <l2script>
 <l2filter count='1' name='EM(0,0.,1.,15.,50,EM(0,6.,0.,0.,0.,0.,1.,6.,0,none,5,0,3,3,50))'/>
 </l2script>
[Comment]
 <l3trigger name='ARNOLD_OR1'/>
This line would be emitted if the L3 script at Index 3 had been a real script instead of a *Or marker, as it
would have indicated a L3 script to be run if the L2 script L2CALEM at index 3 passed. Such a real L3
script would indicate a mixed split and or structure, and is allowed, but not included in this trigger list. The
lack of the real script (*Or marker) indicates that the L2 script exists here not to support a split, but only as a
member of a group to be Or’d; if either L2CALEM or L2CALDIEM pass, then the two real L3 scripts
Mp_Ele and L3FEle will each be run.
[end comment]
 </l2trigger>
 <l2trigger name='4^ARNOLD_OR2'>
 <l2script>
 <l2filter count='1'
name='HT(0,18.,1,EM(0,0.,1.,1.,2,EM(0,120.,999.,999.,999.,999.,1.,1.,0,none,5,0,3,3,50)),PASS100,PASS1
00)'/>
 </l2script>
[Comment]

Representation Spec Revision 1

 13

 <l3trigger name='ARNOLD_OR2'/>
This line would be emitted if the L3 script at Index 4 had been a real script instead of a *Or marker, as it
would have indicated a L3 script to be run if the L2 script L2CALEM at index 4 passed.
[end comment]
 </l2trigger>
[comment] Here are the members of the L3 or group for this L1 trigger. Their name is simply the
TriggerName on the index lines defining them. These
 <l3trigger name='ARNOLD_OR3'/>
 <l3trigger name='ARNOLD_OR4'/>
 </l1trigger>
 </expogroup>
 <expogroup other_gs='allcrates_novbd' name='eg2_Test_1.00' readout='allcrates'>
 <l1termlist>
 <l1specterm name='live_accel_bx'/>
 <l1specterm require='veto' name='skip_next_n_0'/>
 <l1specterm name='caltc00'/>
 </l1termlist>
 <l1trigger name='Acaltc00' prescale='0'>
 <l1termlist>
 <l1specterm name='caltc00'/>
 <l1specterm require='veto' name='skip_next_n_0'/>
 <l1specterm name='live_accel_bx'/>
 </l1termlist>
 <l2trigger name='7^Cal_unsuppressed'>
 <l3trigger name='Cal_unsuppressed'/>
 </l2trigger>
 </l1trigger>
 </expogroup>
 <triglist>
[comment] This begins part A of the <triglist> [end comment]
 SRDirective (useL2=yes)|
 SRDirective (monitorinfo=10)|
 SRDirective (sendmoninfo=yes)|
 SRDirective (allowInclusiveMonitorStream=yes)|
 L3ERR_online L3ErrHandle(
 logfile="L3_SR_tsim.log",
 statsfile="L3_SR_stat.log",
 filethreshold="error",
 statsthreshold="info",
 tooltype="ErrorHandle",
 port=52245,
 host="d0ol39.fnal.gov",
 exename="Srnode")|
 RUN_CFG L3RunConfigMgr(
 runcfg_file="cfg.dat",
 tooltype="utility")|
 GEO L3GeometryManagement(
 tooltype="utility",
 RunNo=-1,
 MCTag="xxx.xx.xx")|

Representation Spec Revision 1

 14

 SmtUnp L3TSmtUnpack(
 chanthreshold=.023,
 maxstrips=33,
 basegeom="SiBaseGeometry",
 channelgeom="SiChannelGeometry",
 adcthreshold=7,
 clusterthreshold=.028,
 tooltype="unpack")|
 CFTUnp L3TCFTUnpack(
 tooltype="unpack",
 adcthreshold=20,
 maxfibers=8,
 basegeom="CftBaseGeometry",
 channelgeom="CftChannelGeometry",
 realdata=TRUE)|
 GlobalTracker L3TGlobalTracker(
 SMTUnpack=SmtUnp,
 CFTUnpack=CFTUnp,
 UseSMT=TRUE,
 DoStereo=TRUE,
 tooltype="data")|
 CAL_UNP_NLC_NADA L3TCalUnp(
 RUN_CFG="RUN_CFG",
 trgthrsh=0.,
 unpthrsh=0.,
 nbrrad=1,
 unpall=0,
 caltype="MC_PLATE",
 L3Nada=1,
 L3NadaThreshold=3.,
 Calib=1,
 dataVersion="latest",
 tooltype="unpack")|
 PrVTX3 L3TCFTVertex(
 TRACKER=GlobalTracker,
 ptcut=3.,
 UsePt=FALSE,
 tooltype="data")|
 CAL_CLUS4_PV3_NLC_ON L3TCalCluster(
 calunp=CAL_UNP_NLC_NADA,
 vertex=PrVTX3,
 conesize=.4,
 MinSeedEt=.5,
 tooltype="data")|
 ELE_NLV_SHT L3TEle(
 CAL=CAL_CLUS4_PV3_NLC_ON,
 EMFR=.9,
 Cal_Cps_dphi=.1,
 Cal_Cps_dz=100.,
 Cal_Cps_deta=.1,

Representation Spec Revision 1

 15

 Cal_Cps_dcut=-.1,
 Cps_Track_dphi=.1,
 Cps_Track_dz=5.,
 Cps_Track_dcut=-.1,
 Cal_Track_dphi=.1,
 Cal_Track_deta=.1,
 Cal_Track_dcut=-.1,
 CALUNP=NONE,
 TRACK=NONE,
 CPS=NONE,
 CHI2=-100.,
 EMSEED=NONE,
 isolation=-1.,
 ConeSize=.25,
 Width_EM1=1.8,
 Width_EM2=1.4,
 Width_EM3=1.15,
 Width_ECEM1=1.,
 Width_ECEM2=1.,
 Width_ECEM3=1.2,
 tooltype="physics")|
 PhTrk1 L3TPhysTracker(
 TRACKER=GlobalTracker,
 ptcut=1.,
 highestNtracks=50,
 MinXYHits=10,
 MinZHits=0,
 tooltype="physics")|
 IsoEle_SHT L3TIsolation(
 tooltype="physics",
 srctrackrefset=ELE_NLV_SHT,
 vertexrefset=PrVTX3,
 calunprefset=CAL_UNP_NLC_NADA,
 swarmtrackrefset=PhTrk1,
 forcelocalmuon=0,
 calcone_r=0.,
 calcone_core=.1,
 cal_e_hcone=999.,
 rapproach=.4,
 rapproach_min=.05,
 maxptsum=1.,
 maxtracks=20)|
 ELE_NLV L3TEle(
 CAL=CAL_CLUS4_PV3_NLC_ON,
 EMFR=.9,
 Cal_Cps_dphi=.1,
 Cal_Cps_dz=100.,
 Cal_Cps_deta=.1,
 Cal_Cps_dcut=-.1,
 Cps_Track_dphi=.1,

Representation Spec Revision 1

 16

 Cps_Track_dz=5.,
 Cps_Track_dcut=-.1,
 Cal_Track_dphi=.1,
 Cal_Track_deta=.1,
 Cal_Track_dcut=-.1,
 CALUNP=NONE,
 TRACK=NONE,
 CPS=NONE,
 CHI2=-100.,
 EMSEED=NONE,
 isolation=-1.,
 ConeSize=.25,
 Width_EM1=-1.,
 Width_EM2=-1.,
 Width_EM3=-1.,
 Width_ECEM1=-1.,
 Width_ECEM2=-1.,
 Width_ECEM3=-1.,
 tooltype="physics")|
 ELE_NLV_SH L3TEle(
 CAL=CAL_CLUS4_PV3_NLC_ON,
 EMFR=.9,
 Cal_Cps_dphi=.1,
 Cal_Cps_dz=100.,
 Cal_Cps_deta=.1,
 Cal_Cps_dcut=-.1,
 Cps_Track_dphi=.1,
 Cps_Track_dz=5.,
 Cps_Track_dcut=-.1,
 Cal_Track_dphi=.1,
 Cal_Track_deta=.1,
 Cal_Track_dcut=-.1,
 CALUNP=NONE,
 TRACK=NONE,
 CPS=NONE,
 CHI2=-100.,
 EMSEED=NONE,
 isolation=-1.,
 ConeSize=.25,
 Width_EM1=2.3,
 Width_EM2=1.7,
 Width_EM3=1.5,
 Width_ECEM1=1.4,
 Width_ECEM2=1.35,
 Width_ECEM3=1.4,
 tooltype="physics")|
[comment] This begins part B of the <triglist>
This part consists of three-part structures:
 L2trig l2name
 filter TriggerName

Representation Spec Revision 1

 17

 script term(s)
One of these structures is emitted for each real L3 script in the trigger
[end comment]
 L2trig 1^min_bias_nim_NCU|
 filter min_bias_nim_NCU |
 L3FPassFraction key=t1s1_PassFraction passFraction=1. Stream="DAQ_TEST" |
 L2trig 2^zero_bias_NCU|
 filter zero_bias_NCU |
 L3FPassFraction key=t2s1_PassFraction passFraction=1. Stream="DAQ_TEST" |
[comment]
At this point the following lines would be emitted if the two L3_OR_MARKER scripts were real.
 L2trig 3^ARNOLD_OR1|
 filter ARNOLD_OR1 |
 L2trig 4^ARNOLD_OR2|
 filter ARNOLD_OR2 |
[end comment]
[comment] Here begins the structure for the first member of the L3 Or group [end comment]
 L2trig 5^ARNOLD_OR3|
 filter ARNOLD_OR3 |
 L3FMarkAndPass key=t5s1_mp17000 pass_1_of_n=17000. Stream="DAQ_TEST" |
 L3FEle key=t5s2_Ele refset=ELE_NLV_SHT number=1 MinEt=22. MinEta=0. MaxEta=3.6
MinEoverp=-99. MaxEoverp=99. Stream="DAQ_TEST" |
 L3FEle key=t5s3_Ele refset=IsoEle_SHT number=1 MinEt=22. MinEta=0. MaxEta=3.6
MinEoverp=-99. MaxEoverp=99. Stream="DAQ_TEST" |
[comment] Notice that the L2trig referenced in the next structure is the same as the one just referenced.
This is because ARNOLD_OR3 and ARNOLD_OR4 refer to L3 scripts part of a single L3 OR group.
[end comment]
 L2trig 5^ARNOLD_OR3|
 filter ARNOLD_OR4 |
 L3FEle key=t6s1_Ele refset=ELE_NLV number=2 MinEt=15. MinEta=0. MaxEta=3.6
MinEoverp=-99. MaxEoverp=99. Stream="DAQ_TEST" |
 L3FEle key=t6s2_Ele refset=ELE_NLV_SH number=1 MinEt=15. MinEta=0. MaxEta=3.6
MinEoverp=-99. MaxEoverp=99. Stream="DAQ_TEST" |
 L3FEle key=t6s3_Ele refset=ELE_NLV number=1 MinEt=20. MinEta=0. MaxEta=3.6
MinEoverp=-99. MaxEoverp=99. Stream="DAQ_TEST" |
 L2trig 7^Cal_unsuppressed|
 filter Cal_unsuppressed |
 L3FMarkAndPass key=t7s1_mp1 pass_1_of_n=1. Stream="DAQ_TEST" |
 L3FPassFraction key=t7s2_PassFraction passFraction=0. Stream="DAQ_TEST" |
||</triglist>
 <l3update name='magnet'>
 <l3parm name='sol_pol' value='$l3.sol_pol'/>
 </l3update>
 </trigdef>
 <!---->&smt_monitoring;<!--An online monitoring process for SMT may be engaged in the CRATER GUI
via file smt_monitoring.xml-->
 <stream substreams='1' name='daq_test' family='daq_test'/>
 <stream substreams='1' name='monitor' family='monitor'/>
</configuration>

